2,781 research outputs found

    Amplified fragment length polymorphism analysis supports the valid separate species status of Lucilia caesar and L. illustris (Diptera: Calliphoridae)

    Get PDF
    Common DNA-based species determination methods fail to distinguish some blow flies in the forensically and medically important genus Lucilia Robineau-Desvoidy. This is a practical problem, and it has also been interpreted as casting doubt on the validity of some morphologically defined species. An example is Lucilia illustris and L. caesar, which co-occur in Europe whilst only L. illustris has been collected in North America. Reports that these species shared both mitochondrial and nuclear gene sequences, along with claims that diagnostic morphological characters are difficult to interpret, were used to question their separate species status. We report here that amplified fragment length polymorphism profiles strongly support the validity of both species based on both assignment and phylogenetic analysis, and that traditional identification criteria based on male and female genital morphology are more reliable than has been claimed.publishedVersio

    Phylogenetic position of <em>Diania</em> challenged

    Get PDF
    Liu et al.1 describe a new and remarkable fossil, Diania cactiformis. This animal apparently combined the soft trunk of lobopodians (a group including the extant velvet worms in addition to many Palaeozoic genera) with the jointed limbs that typify arthropods. They go on to promote Diania as the immediate sister group to the arthropods, and conjecture that sclerotized and jointed limbs may therefore have evolved before articulated trunk tergites in the immediate arthropod stem. The data published by Liu et al.1 do not un-ambiguously support these conclusions; rather, we believe that Diania probably belongs within an unresolved clade or paraphyletic grade of lobopodians

    Colony size predicts division of labour in Attine ants

    Get PDF
    Division of labour is central to the ecological success of eusocial insects, yet the evolutionary factors driving increases in complexity in division of labour are little known. The size–complexity hypothesis proposes that, as larger colonies evolve, both non-reproductive and reproductive division of labour become more complex as workers and queens act to maximize inclusive fitness. Using a statistically robust phylogenetic comparative analysis of social and environmental traits of species within the ant tribe Attini, we show that colony size is positively related to both non-reproductive (worker size variation) and reproductive (queen–worker dimorphism) division of labour. The results also suggested that colony size acts on non-reproductive and reproductive division of labour in different ways. Environmental factors, including measures of variation in temperature and precipitation, had no significant effects on any division of labour measure or colony size. Overall, these results support the size–complexity hypothesis for the evolution of social complexity and division of labour in eusocial insects. Determining the evolutionary drivers of colony size may help contribute to our understanding of the evolution of social complexity

    Colony size predicts division of labour in Attine ants

    Get PDF
    Division of labour is central to the ecological success of eusocial insects, yet the evolutionary factors driving increases in complexity in division of labour are little known. The size–complexity hypothesis proposes that, as larger colonies evolve, both non-reproductive and reproductive division of labour become more complex as workers and queens act to maximize inclusive fitness. Using a statistically robust phylogenetic comparative analysis of social and environmental traits of species within the ant tribe Attini, we show that colony size is positively related to both non-reproductive (worker size variation) and reproductive (queen–worker dimorphism) division of labour. The results also suggested that colony size acts on non-reproductive and reproductive division of labour in different ways. Environmental factors, including measures of variation in temperature and precipitation, had no significant effects on any division of labour measure or colony size. Overall, these results support the size–complexity hypothesis for the evolution of social complexity and division of labour in eusocial insects. Determining the evolutionary drivers of colony size may help contribute to our understanding of the evolution of social complexity

    Peramorphosis, an evolutionary developmental mechanism in neotropical bat skull diversity

    Get PDF
    Background The neotropical leaf‐nosed bats (Chiroptera, Phyllostomidae) are an ecologically diverse group of mammals with distinctive morphological adaptations associated with specialized modes of feeding. The dramatic skull shape changes between related species result from changes in the craniofacial development process, which brings into focus the nature of the underlying evolutionary developmental processes. Results In this study, we use three‐dimensional geometric morphometrics to describe, quantify, and compare morphological modifications unfolding during evolution and development of phyllostomid bats. We examine how changes in development of the cranium may contribute to the evolution of the bat craniofacial skeleton. Comparisons of ontogenetic trajectories to evolutionary trajectories reveal two separate evolutionary developmental growth processes contributing to modifications in skull morphogenesis: acceleration and hypermorphosis. Conclusion These findings are consistent with a role for peramorphosis, a form of heterochrony, in the evolution of bat dietary specialists

    Conflicting phylogenomic signals reveal a pattern of reticulate evolution in a recent high‐Andean diversification (Asteraceae: Astereae: Diplostephium)

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137610/1/nph14530_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137610/2/nph14530.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137610/3/nph14530-sup-0001-SupInfo.pd

    The radiation of cynodonts and the ground plan of mammalian morphological diversity

    Get PDF
    Cynodont therapsids diversified extensively after the Permo-Triassic mass extinction event, and gave rise to mammals in the Jurassic. We use an enlarged and revised dataset of discrete skeletal characters to build a new phylogeny for all main cynodont clades from the Late Permian to the Early Jurassic, and we analyse models of morphological diversification in the group. Basal taxa and epicynodonts are paraphyletic relative to eucynodonts, and the latter are divided into cynognathians and probainognathians, with tritylodonts and mammals forming sister groups. Disparity analyses reveal a heterogeneous distribution of cynodonts in a morphospace derived from cladistic characters. Pairwise morphological distances are weakly correlated with phylogenetic distances. Comparisons of disparity by groups and through time are non-significant, especially after the data are rarefied. A disparity peak occurs in the Early/Middle Triassic, after which period the mean disparity fluctuates little. Cynognathians were characterized by high evolutionary rates and high diversity early in their history, whereas probainognathian rates were low. Community structure may have been instrumental in imposing different rates on the two clades

    Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms

    Get PDF
    The diversity of arbuscular mycorrhizal (AM) fungi was investigated in an unfertilized limestone grassland soil supporting different synthesized vascular plant assemblages that had developed for 3 yr. The experimental treatments comprised: bare soil; monocultures of the nonmycotrophic sedge Carex flacca; monocultures of the mycotrophic grass Festuca ovina; and a species-rich mixture of four forbs, four grasses and four sedges. The diversity of AM fungi was analysed in roots of Plantago lanceolata bioassay seedlings using terminal-restriction fragment length polymorphism (T-RFLP). The extent of AM colonization, shoot biomass and nitrogen and phosphorus concentrations were also measured. The AM diversity was affected significantly by the floristic composition of the microcosms and shoot phosphorus concentration was positively correlated with AM diversity. The diversity of AM fungi in P. lanceolata decreased in the order: bare soil > C. flacca > 12 species > F. ovina. The unexpectedly high diversity in the bare soil and sedge monoculture likely reflects differences in the modes of colonization and sources of inoculum in these treatments compared with the assemblages containing established AM-compatible plants

    Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size.

    Get PDF
    This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Plants exhibit an extraordinary range of genome sizes, varying by > 2000-fold between the smallest and largest recorded values. In the absence of polyploidy, changes in the amount of repetitive DNA (transposable elements and tandem repeats) are primarily responsible for genome size differences between species. However, there is ongoing debate regarding the relative importance of amplification of repetitive DNA versus its deletion in governing genome size. Using data from 454 sequencing, we analysed the most repetitive fraction of some of the largest known genomes for diploid plant species, from members of Fritillaria. We revealed that genomic expansion has not resulted from the recent massive amplification of just a handful of repeat families, as shown in species with smaller genomes. Instead, the bulk of these immense genomes is composed of highly heterogeneous, relatively low-abundance repeat-derived DNA, supporting a scenario where amplified repeats continually accumulate due to infrequent DNA removal. Our results indicate that a lack of deletion and low turnover of repetitive DNA are major contributors to the evolution of extremely large genomes and show that their size cannot simply be accounted for by the activity of a small number of high-abundance repeat families.Thiswork was supported by the Natural Environment ResearchCouncil (grant no. NE/G017 24/1), the Czech Science Fou nda-tion (grant no. P501/12/G090), the AVCR (grant no.RVO:60077344) and a Beatriu de Pinos postdoctoral fellowshipto J.P. (grant no. 2011-A-00292; Catalan Government-E.U. 7thF.P.)

    Evolution of the Gene Lineage Encoding the Carbon Dioxide Receptor in Insects

    Get PDF
    A heterodimer of the insect chemoreceptors Gr21a and Gr63a has been shown to be the carbon dioxide receptor in Drosophila melanogaster (Meigen) (Diptera: Drosophilidae). Comparison of the genes encoding these two proteins across the 12 available drosophilid fly genomes allows refined definition of their N-termini. These genes are highly conserved, along with a paralog of Gr21a, in the Anopheles gambiae, Aedes aegypti, and Culex pipiens mosquitoes, as well as in the silk moth Bombyx mori and the red flour beetle Tribolium castaneum. In the latter four species we name these three proteins Gr1, Gr2, and Gr3. Intron evolution within this distinctive three gene lineage is considerable, with at least 13 inferred gains and 39 losses. Surprisingly, this entire ancient gene lineage is absent from all other available more basal insect and related arthropod genomes, specifically the honey bee, parasitoid wasp, human louse, pea aphid, waterflea, and blacklegged tick genomes. At least two of these species can detect carbon dioxide, suggesting that they evolved other means to do so
    corecore